
Case Study: Visual Debugging Of Finite Element Codes
Patricia Crossno1

David H. Rogers2

Christopher J. Garasi3

Sandia National Laboratories4

Abstract
We present an innovative application developed at Sandia

National Laboratories for visual debugging of unstructured finite
element physics codes. Our tool automatically locates anomalous
regions, such as inverted elements or nodes whose variable values
lie outside a prescribed range, then extracts mesh subsets around
these features for detailed examination. The subsets are viewed
using color coding of variable values superimposed on the mesh
structure. This allows the values and their relative spatial
locations within the mesh to be correlated at a glance. Both
topological irregularities and hot spots within the data stand out
visually, allowing the user to explore the exact numeric values of
the grid at surrounding points over time. We demonstrate the
utility of this approach by debugging a cell inversion in a
simulation of an exploding wire.

CR Categories and Subject Descriptors: I.3.8 [Computer
Graphics]: Applications; C.4 [Performance of Systems] Modeling
techniques � Performance attributes.
Additional Keywords: visual debugging, parallel finite element
codes and simulations.

1. INTRODUCTION
We use visualization to help us understand the results of

complex, scientific simulations. Transforming large quantities of
numbers into three-dimensional shapes and images allows us to
use our innate visual processing skills to interpret the data and
identify patterns. We use these same skills to assist us in
understanding the complexities of software systems, such as
massively parallel physics simulations.

Typical scientific visualization algorithms seek to hide the
underlying data structures from the viewer. For instance, if the
visualization is of an isosurface through a volumetric data set, the
goal is to present a smooth surface that does not provide any
indication of the underlying grid resolution or processor
decomposition. However, while debugging a simulation, if an
error in the output is identified while visualizing the results, it is
difficult to correlate the error with the underlying data structures
on the appropriate processor. In this situation, it would be better
to explicitly represent data structures, processor assignment, and
other program elements to assist the software developer in finding
the error that led to the anomalous results.

Given that software execution is a dynamic process, another
component of understanding the complexities of simulation codes
is to literally see how variables change over time. By abstracting
the variable values to color or shape, mapping them into a three-

dimensional domain so that proximity relationships can be
correlated with the values, and then showing this over time, the
software developer can gain insights into complex, dynamic
behaviors within the code. Without this sort of tool, the developer
must try to mentally generate a model of variable values in space
changing through time. For most people this is very difficult to
do, so the dynamics of program behavior must be gleaned through
traditional animations of the simulation.

In response to these issues, we have developed a suite of tools
for visually debugging parallel physics simulations that make the
underlying finite element structures explicit in the visualization.
Visual complexity is reduced by using feature detection to find
and extract regions of interest from within the mesh prior to
detailed viewing. Context within the larger mesh is provided by
also extracting external element faces for either the entire volume
or blocks of elements within the volume representing significant
model components or parts.

Figure 1: The simulation is of an exploding wire. The volume
fraction of the wire material in each element is shown through
color, with low amounts as blue and high amounts in red.
Elements with levels below a threshold are culled. An inverted
element is highlighted in pink on the right. The elements are
subsets of extracted planes taken through the inverted element.
Black arrows show the derived vectors for magnetic force, J x B.

--

1pjcross@sandia.gov, 2dhroger@sandia.gov, 3cjgaras@sandia.gov
4P.O. Box 5800, Albuquerque NM 87185-0822

mailto:*pjcross@sandia.gov
mailto:rahayne@sandia.gov

We have used this tool to help debug a three-dimensional
simulation of an exploding wire in which an element inverted
unexpectedly. Using our tools, we were able to rapidly locate the
inverted element and extract a subset of elements surrounding it.
Examining this mesh subset in our viewer as shown in Figure 1,
we were able to see the topology that lead to the failure.

2. RELATED WORK
This work builds upon our previous work in debugging

particle systems [3] and cluster hardware [4][5]. Although we
have not found any previous work that uses visualization to debug
finite element codes in particular, using visualization to debug or
do performance analysis of parallel programs is relevant. The
Rivet system performs analysis and visualization of parallel
applications in a shared memory environment [1]. Browne et al
created a directed graph representation for parallel programs to
simplify parallel programming [2]. The Interactive Visualization
Debugger integrates debugging, performance analysis, and data
visualization for message passing parallel applications [6]. Devise
is a generic integrated performance analysis and visualization
system that has been coupled with the Paradyn Parallel
Performance Tool [7]. The MAD environment is a tool set for
parallel program debugging [8]. Zhang, Hintz, and Ma use graph
formalisms and notation to visualize parallel programs and their
execution [9].

3. IMPLEMENTATION
Finite element models use elements and groups of elements,

called element blocks, as central conceptual components. In the
simulation examined in this paper, each element is a hexahedron
and is formed by eight nodes designating the corners of the
element. Variable values are associated with both elements and
nodes and change over time as the simulation progresses. These
values are output at regular time intervals and represent changes
in the program�s state.

Our implementation consists of three parts. First we have a
parallel query tool, which divides up the simulation model across
multiple processors, scans each of the variables at each time step,
and outputs value range information and histograms. Next, we
use a parallel feature extraction tool to search the data for either
topologically incorrect elements or variable values outside a user-
specified range, extracting a neighborhood of elements around
any features that are found. Lastly, we have a viewer that draws
mesh subsets using color-coding of variables combined with
explicit representations of the underlying grids, which allows the
user to see anomalies in the data visually and to drill down to get
detailed numeric information from specific elements or nodes.

The tool is implemented using a combination of C and C++
using OpenGL as the graphics API. The user interface is
implemented using Tcl/Tk. The tool is platform independent and
runs on IRIX, LINUX and NT systems.

3.1 Query
The first time a user interacts with a data set, we generate a

meta-data file describing the names and types of variables, their
minimum and maximum values at each time step, and the
distribution of values per variable per time step. This meta-data is
then displayed both numerically and visually to provide
information to the user in selecting parameters for feature
detection and mesh subset extraction.

Typically, data sets are generated in parallel on a cluster.
Each processor writes a separate output file that describes a

section of the global grid over a series of time steps in the
simulation. The query tool also runs in parallel, though it need
not run on the same number of processors as the original
simulation. Each processor scans its portion of the data and the
results are gathered onto a single processor and written out into an
XML file.

3.2 Feature Extraction
Mesh data can be searched for both inverted elements and

variable values that fall outside a user-specified range. Inverted
elements are detected by searching for elements in the final time
step that have a negative Jacobian. Value scanning can be done
on element and node variables over a user-specified range of time
steps. The variables are selected and their limits are set using a
graphical user interface (GUI). The extraction tool then searches
for values outside that range.

Once features are found within the mesh, the extraction tool
marks those elements for output. If the feature is centered on a
node, all of the elements using that node are marked. A
neighborhood distance parameter defines the size of the feature-
centered sub-mesh to output. This distance is a topological radius
that can be thought of as the number of layers of elements around
the feature, where the elements are maximally connected using
face, edge, and node connectivity. A small neighborhood of
elements is shown in Figure 2. Multiple features can be extracted
at once, even if they form disconnected components.

Figure 2: The inverted element, which is highlighted in black, is
surrounded by a neighborhood of elements. Elements are color-
coded by processor id.

3.3 Mesh Subset Viewer
The mesh subset viewer provides a unique paradigm for

debugging and is the core of the project. To make the images
easier to understand, the viewer is entirely application specific
and only deals with finite element meshes. The challenge in the
viewer is to deal with the problem of scale in dealing with very
large meshes, while still providing both context and focus.

3.3.1 Context
As the number of elements within a simulation increases,

visualizing all of the elements fails when the number of elements
exceeds the number of pixels in the display. In fact, even
moderate-sized meshes present a viewing problem because the
meshes are three-dimensional and interior elements are obscured.
Subset meshes require context with respect to the original mesh in
order to be useful. The viewer provides context in three ways.

Figure 3: External faces showing selected element blocks provide
context for the mesh subset shown in Figure 1. The element block
on the left is drawn as a solid with the element boundaries
outlined. The cylindrical element block representing the wire is
drawn in wire-frame mode to permit elements interior to the wire
to be visible. The element block encompassing the inverted
element and the elements in the material interface has been turned
off.

Figure 4: The material interface between the wire and the vacuum
is shown in these two images. The elements are colored by the
amount of the wire material in each element. As the wire is
exploding, fingers of the material are coming off the wire, which
lies to the left as the solid red region. Although in the image on
the left the inverted element appears isolated from the material, by
adding additional elements from the neighborhood around the
inverted element, we can see it is tenuously connected.

First, the user needs to know where the subset lies relative to
the boundaries and components of the original model. During the
extraction process, the user can choose to output external element
faces from significant structures within the model, which are then
loaded into the viewer along with the mesh subset. There are
three options for defining the external faces: the boundary
elements for the entire volume, the boundary elements for each
piece of the model or element block, or a user specified list of
element block groups. In the viewer, these faces can be viewed as
wire frames, solid surfaces, and groups of faces can be turned on
and off. These viewing options are shown in Figure 3.

The second type of context is to know where the feature
element lies relative to various material boundaries that change
dynamically during the simulation. Typically, the neighborhood
of elements extracted surrounding the feature element is not large
enough to see the salient aspects of the material interface, so we
also allow the user to optionally extract topologically-orthogonal
�planes� of elements centered on a feature element. An element
plane is found in a manner similar to that used in extracting a
neighborhood of elements, but instead of stepping out in all
directions using maximum connectivity, a subset of faces is
followed in an ever-expanding ring from the center element. This
is repeated for each orthogonal direction. As elements are
extracted as either features or planes, they are tagged with a
USAGE variable so that the viewer can quickly show or hide
these groups. Examples of topological planes displaying material
interfaces are given in both Figure 1 and Figure 4.

Time is the third contextual frame of reference. Not only do
the contents of variables change over time, but the topology of the
mesh can also warp as node positions shift. Additionally,
animation provides insights into dynamic behaviors, such as
watching the progression of the material interface or the
propagation of temperature over time. We provide a VCR-like
interface that allows both animation and single stepping. Random
access to individual time steps is also available.

3.3.2 Focus
The two central issues in the visualization of the focus region

are how to maximize information content, while simultaneously
minimizing visual clutter. We use color, shape, mesh topology,
and spatial juxtaposition to represent model information. To
reduce the number of objects in the display to just those which
address a specific question, we provide a variety of filtering
mechanisms that give the user fine control of the features desired
in the culled subset of focus elements.

Figure 5: The image on the left shows time dump 16. On the right
is time dump 17. The inverted element is highlighted in black.
Elements are colored by temperature and culled to show only
higher temperatures.

We use a spectrum scale for our color-encoding scheme
because it is familiar to our users and they requested it. In this
scale, the color order from high values to low values is red,
orange, yellow, green, cyan, blue, indigo. Violet is the bottom of
the scale and elements with this color are generally culled.

We render elements as colored boxes with their edges
highlighted in black to reinforce the three-dimensionality of the
model. We can either draw the elements at full size as shown in
Figure 4, or we can draw the elements at a reduced scale as shown
in Figure 5 and Figure 2. One advantage of reducing the scale is
that it enables the user to see interior elements, or the sides of
elements lying in a group. In Figure 5, the color-coding combined
with the topological information tells us that the inverted element

had a lower temperature while the adjacent red element had an
unusually high temperature compared to nearby elements.

Although the nodes are implicitly rendered as the corners of
the elements, the nodes can be explicitly represented in one of two
ways. To view scalar-valued nodal variables, or a single
component of a vector variable, the user can enable small colored
spheres to be drawn at element corners. For vector variables,
scalable arrow glyphs can be either combined with the spheres or
drawn independently as shown in Figure 1. By rendering a
combination of colored element boxes, colored nodal spheres, and
nodal vector arrows, three different variable values can be viewed
simultaneously. These variables can then be viewed changing
over time through the animation capability. In addition, derived
quantities can also be generated and viewed, such as the vector
cross product shown in Figure 1.

Elements can be selected using picking. Numeric values for
the picked element�s variables appear in a display window. These
values are updated with each time increment during animation or
when single stepping. The highlight designating the picked
element provides feedback and element tracking as the element
color or shape changes through time.

We reduce visual clutter by providing many different ways to
cull sections of the model. The coarsest level of culling is done
during the extraction step with the selection of a neighborhood of
elements and topological planes around a feature. Once in the
viewer, the neighborhood and each of the planes is treated as a
separate object whose display is individually controllable.
Elements within each of these objects are also automatically
partitioned into processor groups based on the element�s
processor id during the simulation. These groups can also be
individually controlled, so a display can be constructed from a
combination of processor groups and extraction groups.

4. RESULTS
We used our tools to debug a simulation of an exploding

wire in which an element inverted after the 17th time dump. The
simulation model was of moderate size and consisted of 241,600
elements distributed over 40 processors. Prior to our tool�s
development, finding the inverted element would have required
manually searching for the inverted element using a conventional
scientific visualization package to whittle away elements from the
model with slicing planes until the inverted element could be
seen. Our extraction tool automatically located the inverted
element and extracted a neighborhood of elements around it,
along with the topological planes running through the element.

 Using the viewer, we were able to determine that the
inverted element existed at the outer radial edge of the exploded
material as seen in Figure 4. These boundary elements are
mixtures of material and vacuum. By culling the boundary
elements based on the percentage of material, we were able to
answer the question: is the inverted element an isolated fragment,
tenuously attached, or a portion of the main body? This illustrates
a potential algorithmic issue with the computation of magnetic
forces in a mixed element. This hypothesis was verified using the
derived magnetic force vector, J x B, which in Figure 1 shows
anomalous values at the inverted element. Additionally, the time
history of neighboring elements indicates a precursor
phenomenon involving temperature, as shown in the time dumps
in Figure 5.

5. CONCLUSIONS AND FUTURE WORK
Automatic feature location and extraction combined with

visualization of color-coded variables mapped into the three-

dimensional topology and components of the finite element mesh
provide a powerful tool for visually debugging simulation codes.
By showing the user multiple variable values in their spatial
context, how these values change over time, and how a
combination of element and node variables interact, our tools
allow the user to examine the simulation at a higher level of
abstraction than a conventional textual debugger can provide.

In the future, we intend to generalize our derived variable
capability to allow users to enter expressions using variables
generated by the simulation to produce arbitrary derived element
or node variables for display in the viewer. Additionally, we want
to tie histograms and statistical information in the query tool back
into the viewer, so that the user can filter the display of elements
by selecting sections of the histogram.

6. ACKNOWLEDGMENTS
We thank Daniel Carroll for providing the element inversion

code and for test data sets. The DOE Mathematics, Information,
and Computer Science Office funded part of this research. The
work was performed at Sandia National Laboratories. Sandia is a
multi-program laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

References
[1] Robert Bosch, Chris Stolte, Gordon Stoll, Mendel

Rosenblum, and Pat Hanrahan. Performance Analysis and
Visualization of Parallel Systems Using SimOS and Rivet: A
Case Study. In Proceedings of the Sixth International
Symposium on High-Performance Computer Architecture,
pages 360-371, January 2000.

[2] James C. Browne, Syed I. Hyder, Jack Dongarra, Keith
Moore, and Peter Newton. Visual Programming and
Debugging for Parallel Computing. IEEE Parallel &
Distributed Technology: Systems & Applications, Vol. 3,
Issue 1, pages 75-83, 1995.

[3] Patricia Crossno and Edward Angel. Visual Debugging of
Visualization Software: A Case Study for Particle Systems.
In Proceedings of Visualization �99, pages 417-420, October
1999.

[4] Patricia Crossno and Rena Haynes. Case Study: Visual
Debugging of Cluster Hardware. In Proceedings of
Visualization 2001, pages 429-432, October 2001.

[5] Rena Haynes, Patricia Crossno, and Eric Russell. A
Visualization Tool for Analyzing Cluster Performance Data.
In Proceedings IEEE International Conference on Cluster
Computing 2001, pages 295-302, October 2001.

[6] Ming C. Hao, Alan H. Karp, Milon Mackey, Vineet Singh,
and Jane Chien. On-the-Fly Visualization and Debugging of
Parallel Programs. In Proceedings International Workshop
on Modeling, Analysis, and Simulation of Computer
Telecommunication Systems, pages 386-391, 1994.

[7] Karen L. Karavanic, Jussi Myllymaki, Miron Livny, and
Barton P. Miller. Integrated Visualization of Parallel
Performance Data. Parallel Computing, Vol. 23, pages 181-
198, 1997.

[8] D. Kranzlmüller, S. Grabner, and J. Volkert. Debugging
with the MAD Environment. Journal of Parallel
Computing, Vol. 23, No. 1-2, pages 199-217, April 1997.

[9] Kang Zhang, Tom Hintz, and Xianwu Ma. The Role of
Graphics in Parallel Program Development. Journal of
Visual Languages and Computing, Vol. 10, No. 3, pages
215-243, June 1999.

	INTRODUCTION
	RELATED WORK
	IMPLEMENTATION
	Query
	Feature Extraction
	Mesh Subset Viewer
	Context
	Focus

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS

